CashFlow ${ }^{\circledR}$ Coin Routing

8 Way Separator Exits
vieved trom above

arning:- If directing more than one coin to the same exit route then use diodes on the routing plug.

Route Inhibit Connector

The function of the route Inhibit Connector is to signal when specific exits, external to the product, are in a "Full" condition. Signals from the machine ensure that, while the "Full" condition continues, further coins/tokens directed to that exit will be re-routed to an alternative exit. The instruction as to which alternative exits can be used will

normally come from the routing plug. In order to inhibit a particular route, OV must be applied to its respective pin. An alternative route must always be of a lower priority.

Route Inhibit Connector Detail			
Pin Number	$\mathbf{1 2 9}$	$\mathbf{1 2 6}$	EXIT Priorities
1	Divert Route 1	(d)	HIGHEST
2	Divert Route 2	(c)	
3	Divert Route 3	(a)	
4	Divert Route 4	(b)	
5	Divert Route 5	C	
6	Divert Route 6	D	LOWEST
7	Divert Route 7	B	
8	Exit 8 is Default	Exit A is Default	
9	0 Volts	0 Volts	Ground

CashFlow ${ }^{8}$ Coin Routing

The CashFlow ${ }^{\text {® }} 126 / 129$ validation system offers two routing priority orders. These can be activated by the use of links fitted to a routing plug.
If you use the upper case letter the overflow order is C, D, B and A ($A=$ default exit route).
If the lowercase letter is used the overflow order is d, c, a , and b .
Example:-
If coin ' F ' is set to route to exit ' C ' (first exit) and when tube ' C ' is full (i.e. inhibit applied to tube C) will route to exit ' D ' (second exit), wire the route plug using wire links as follows:-
pin 20 to $6=$ coin ' F ' to exit ' C ' (first exit)
pin 5 to $3=$ coin ' F ' to exit ' D ' (overflow/second exit)

Mars Electronics Internationa Eskdale Road,
Winnersh Triangle, Wokingham, Berkshire, RG41 5AQ
Internet:http://lwww.meiglobal.com

CashFlow ${ }^{\otimes}$ 126 / 129 Quick Reference Guide

Applies to Product Version G1

Typical coin set label
篦

JGB002LG0103			
Tok1	Tok2	5	10
20	500 t	50\%	50
$\varepsilon 1$	$\varepsilon 1$	£2	£2
-	-	-	-

Position	Channel Affected	Coin Type	Coin Output	Coin Enabled
0	0	Token 1	B	No
1	1	Token 2	B	Yes
2		5 p	A	Yes
3	3	10p	C	Yes
4	4	20p	D	Yes
5	5	50 p Tight		No
6	6	50p	E	Yes
7	7	50p New	G	No
8	8	£1	F	Yes
9	9	£1	F	Yes
A	10	£2 Tight	H	No
B	11	£2	H	No
C	12	-	-	
D	13	-	-	
E	14	-	-	
F	15	-	-	

25012 G1
©, Mars, Inc., 1997

What Is The Green LED Doing?

STATE	MEANING
ON	Power is ON validator is O.K.
$1 \times$ Flash	Reject lever pressed or coin accepted
$2 \times$ Flash	Coin rejected as unrecognised
$3 \times$ Flash	Coin inhibited by validator
$4 \times$ Flash	Coin inhibited by validator or machine
Flashing	Validator is set in teach mode
OFF	No power to validator

Using 4 Way DIL \& Rotary Data Switches

To achieve a successful change to the configuration of the validator the following procedure must be followed.

> 1.Switch OFF the power to the validator.
2.Set the 4 way DIL switches to the configuration settings required. (See Product Configuration Table)
3.Select the required data / channel position using the rotary data switch. (see product configuration table)
4.Switch the validator power ON. (The LED will start flashing).
5. Return the 4 way DIL teach switches back to Normal Operation Settings. (Switches 2,3 \& 4 set to all ON or all OFF).
6. The LED will stop flashing and will stay ON. This will indicate a successful change and that the validator is ready for normal operation.

NOTE:- If teach is entered by mistake, switch OFF the power to the validator before moving the 4 way DIL switch positions else the mech. may learn something unintentionally.

Product Configuration

Normal Operation Settings

What Do You Want To Do?		曲			
		SW1	SW2	SW3	SW4
Inhibit a coin or token channel	0-F	-	OFF	ON	OFF
Enable a coin or token channel	0-F	-	ON	OFF	OFF
Token group for channel 0	0-D	-	OFF	ON	ON
Token group for channel 1	0-D	-	ON	ON	OFF
Self teach a token for channel 0	- E or F	-	OFF	ON	ON
Self teach a token for channel 1	- E or F	-	ON	ON	OFF
Fraud Defence teach channel 0	E	-	ON	OFF	ON
Change overflow default exit route	0-7	-	OFF	OFF	ON
Set the alarm ON	-	ON	-	-	
Set the alarm OFF	-	OFF	-	-	-
Selecting Machine Interface Types					
Binary coded output	C	-	OFF	OFF	ON
Parallel output	D	-			
Auto configuration	F	-			

- E = Tight Window Limits. Channel F = Standard Window Limits

Teaching Token (LED Assistance Codes)		
LED Flashes	Description for Code	Reason/Action
x 2	Validator timed out	No activity was registered within 30 seconds
x 3	Not enough sample tokens inserted	Ensure at least 10 tokens have been inserted
x 4	Incorrectly set rotary switch position	Ensure that the rotary switch is set to "F"
x 5	Token thickness outside acceptable limits	
x 6	Token diameter outside acceptable limits	Check that there are no mixed
sample tokens		

Teaching a New Token

The following procedure must be followed in order to teach a new token into channel 1.
NOTE:- Rotary data switch position " E " is used to program tight window token limits and ' F ' standard window token limits.
1.Switch OFF the power to the validator.
2. Set the 4 way DIL teach switches $2,3 \& 4$ to ON,

ON \& OFF (channel 1) or OFF, ON \& ON for (channel 0)
3.Set rotary data switch to position "F" standard window limit.
4.Switch ON the power to the product.
(The LED will start flashing).
5.Insert 10 to 20 (minimum 10) of the desired tokens through the validator.
6. Return the 4 way DIL switches $2,3 \& 4$ to Normal Operation settings.
(LED will stop flashing and stay ON to indicate success).
If the LED continues to flash OFF a number of times this indicates a failure to teach the new token. See LED Assistance Codes table for help and then restart procedure again.
7. Token is now programmed and ready to use. (New token information has been stored in coin channel " 1 " which is rotary switch position " 1 "). Any previous taught token information in this channel will be overwritten).

NOTE:- If token self teach is successful but token taught is rejected i.e. gives 3 flashes of the LED, check that channel " 1 " is enabled.
To enable the new token set the rotary data switch to position "1" then refer to enabling coin or tokens configuration procedure).

